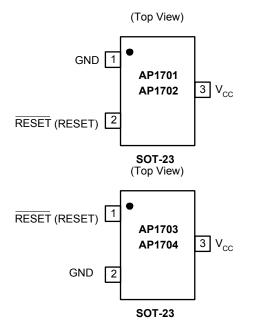


AP1701/2/3/4

Features

- Precision Monitoring of +3V, +3.3V, and +5V Power-Supply Voltages
- Fully Specified Over Temperature
- Available in Three Output Configurations
- Push-Pull RESET Low Output (AP1701/3)
- Push-Pull RESET High Output (AP1702/4)
- 140ms min Power-On Reset Pulse Width
- 12µA Supply Current
- Guaranteed Reset Valid to VCC = +1V
- Power Supply Transient Immunity
- No External Components
- 3-pin SOT23 package

Applications

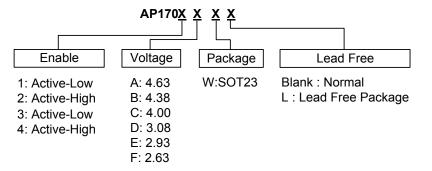

- Computers
- Controllers
- Intelligent Instruments
- Critical µP and µC Power Monitoring
- Portable/Battery Powered Equipment
- Automotive

General Description

The AP1701/2/3/4 are used for microprocessor (μ P) supervisory circuits to monitor the power supplies in μ P and digital systems. They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with +5V, +3.3V, +3.0V powered circuits.

These circuits perform a single function: they assert a reset signal whenever the VCC supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after VCC has risen above the reset threshold. Reset thresholds suitable for operation with a variety of supply voltages are available. The AP1701/2/3/4 have push pull outputs. The AP1701/3 have an active low RESET output, while the AP1702/4 has an active high RESET output. The reset comparator is designed to ignore fast transients on VCC, and the outputs are guaranteed to be in the correct logic state for VCC down to 1V. Low supply current makes the AP1701/2/3/4 ideal for use in portable equipment. The AP1701/2/3/4 is available in a 3-pin SOT23 package.

Pin Assignments

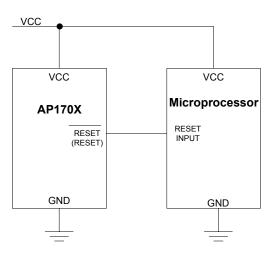

Pin Descriptions

Name	Description		
GND	Ground		
RESET (RESET)	Reset output pin L: for AP1701/3 H: for AP1702/4		
V _{cc}	Operating voltage input		

This datasheet contains new product information. Anachip Corp. reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sale of the product.

Ordering Information

Absolute Maximum Ratings


Symbol	Parameter	Rating	Unit
V _{CC}	Terminal Voltage (with respect to GND)	-0.3 to +6.0	V
V _{RESET}	RESET, RESET (push-pull)	-0.3 to (V _{CC} + 0.3)	V
I _{cc}	Input Current, V _{CC}	20	mA
Ι _Ο	Output Current, RESET, RESET	20	mA
V _R	Rate of Rise, V _{CC}	100	V/µS
P _D	Continuous Power Dissipation ($T_A = +70^{\circ}C$), de-rate 4mW/°C above +70°C	320	mW
T _{OP}	Operating Temperature Range	-40 to +105	°C
T _{ST}	Storage Temperature Range	-65 to +150	°C
T _{LEAD}	Lead Temperature (soldering, 10s)	+300	°C

■ Electrical Characteristics (T_A=25°C)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
V _{CC}	V _{cc} Range	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ 1.0			5.5	V	
1	Supply Current	V _{CC} < 5.5V		19	60	μA	
I _{CC}		V _{CC} < 3.6V		17	50	μA	
	Reset Threshold T _A =25°C	AP1701/2/3/4A	4.54	4.63	4.72	-	
		AP1701/2/3/4B	4.29	4.38	4.47		
		AP1701/2/3/4C	3.92	4.00	4.08	v	
V_{TH}		AP1701/2/3/4D	3.02	3.08	3.14		
- 111		AP1701/2/3/4E	2.87	2.93	2.99		
		AP1701/2/3/4F	2.57	2.63	2.68		
	Reset Threshold Tempco			30		ppm/°C	
	V _{CC} to Reset Delay	$V_{CC} = V_{TH}$ to ($V_{TH} - 100$ mV)		20		μs	
T _{DELAY}	Reset Active Timeout Period	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$		240	380	ms	
	RESET Output Voltage Low	$V_{CC} = V_{TH} \text{ min}, I_{SINK} = 1.2 \text{ mA}, \text{AP1701/3}$			0.3		
V_{OL}		$V_{CC} = V_{TH} \min, I_{SINK} = 3.2 \text{mA}$			0.4	V	
		V _{CC} > 1.0V, I _{SINK} = 50uA			0.3		
V _{OH}	RESET Output Voltage-High	V _{CC} > V _{TH} max, I _{SOURCE} = 500uA, AP1701/3	$0.8V_{CC}$			V	
		V _{CC} > V _{TH} max, I _{SOURCE} = 800uA	V_{CC} –1.5				
V _{OL}	RESET Output Voltage-Low	$V_{CC} = V_{TH} \max$, $I_{SINK} = 1.2mA$, AP1702/4			0.3	V	
		$V_{CC} = V_{TH} \max$, $I_{SINK} = 3.2 mA$			0.4	v	
V_{OH}	RESET Output Voltage-High	1.8V < V _{CC} < V _{TH} min, I _{SOURCE} = 150uA, AP1702/4	0.8 V _{CC}			V	

Application Circuit

Function Description

A microprocessor's (μ P's) reset input starts the μ P in a known state. The AP1701/2/3/4 assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the VCC supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after VCC has risen above the reset threshold. The AP1701/2/3/4 have a push-pull output stage.

Applications Information

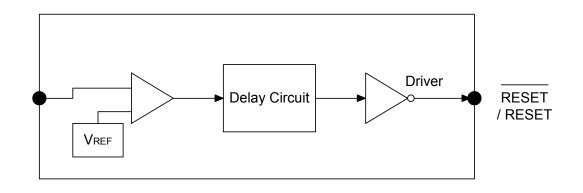
Negative-Going VCC Transients

In addition to issuing a reset to the μ P during power-up, power-down, and brownout conditions, the AP1701/2/3/4 are relatively immune to short-duration negative-going VCC transients (glitches).

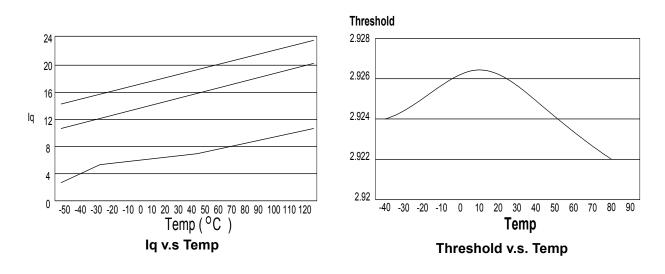
The AP1701/2/3/4 do not generate a reset pulse. The graph was generated using a negative going pulse applied to VCC, starting 0.5V above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the maximum pulse width a negative going VCC transient can have without causing a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a VCC transient that goes 100mV below the reset threshold and lasts 20µs or less will not cause a reset pulse. A 0.1µF bypass capacitor mounted as close as possible to the VCC pin provides additional transient immunity.

Ensuring a Valid Reset Output Down to VCC = 0

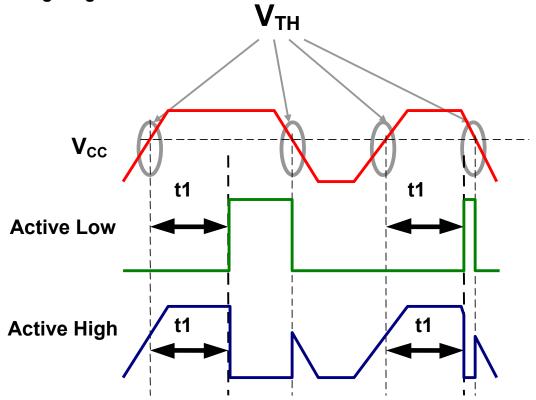
RESET is guaranteed to be a logic low for VCC > 1V. Once VCC exceeds the reset threshold, an internal timer keeps RESET low for the reset timeout period; after this interval, RESET goes high. If a brownout condition occurs (VCC dips below the reset threshold), RESET goes low. Any time VCC goes below the reset threshold, the internal timer resets to zero, and RESET goes low. The internal timer starts after VCC returns above the reset threshold, and RESET remains low for the reset timeout period. When VCC falls below 1V, the AP1701/3 RESET output no longer sinks current—it becomes an open circuit. Therefore, high-impedance CMOS logic inputs connected to RESET can drift to undetermined voltages.

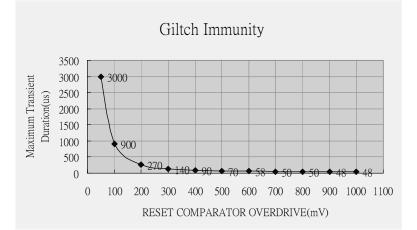

This presents no problem in most applications since most μ P and other circuitry is inoperative with VCC below 1V. However, in applications where RESET must be valid down to 0V, adding a pull down resistor to RESET causes any stray leakage currents to flow to ground, holding RESET low. R1's value is not critical; 100k is large enough not to load RESET and small enough to pull RESET to ground. For the AP1702/4 if RESET is required to remain valid for VCC < 1V.

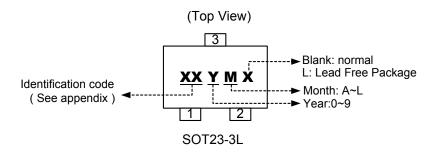
Benefits of Highly Accurate Reset Threshold


Most μ P supervisor ICs have reset threshold voltages between 5% and 10% below the value of nominal sup-ply voltages. This ensures a reset will not occur within 5% of the nominal supply, but will occur when the supply is 10% below nominal. When using ICs rated at only the nominal supply ±5%, this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset may or may not be asserted.

Function Block

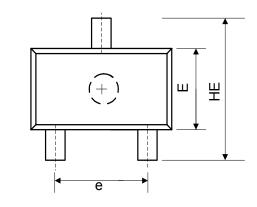


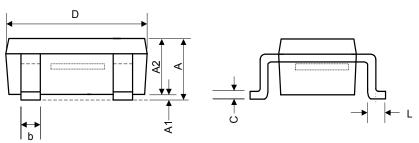

Performance Characteristics



Timing Diagram

Marking Information




Appendix						
Part	Identification	Part	Identification			
Number	Code	Number	Code			
AP1701A	EA	AP1703A	EG			
AP1701B	EB	AP1703B	EH			
AP1701C	EC	AP1703C	EI			
AP1701D	ED	AP1703D	EJ			
AP1701E	EE	AP1703E	EK			
AP1701F	EF	AP1703F	EL			
AP1702A	E0	AP1704A	E7			
AP1702B	E2	AP1704B	E8			
AP1702C	E3	AP1704C	E9			
AP1702D	E4	AP1704D	EM			
AP1702E	E5	AP1704E	EN			
AP1702F	E6	AP1704F	EP			

AP1701/2/3/4

Package Information

Package Type: SOT23-3L

Symbol	Dimensions In Millimeters			Dimensions In Inches		
	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	1.00	1.20	1.40	0.039	0.047	0.055
A1	0.00	-	0.10	0.000	-	0.004
A2	1.00	1.15	1.30	0.039	0.045	0.051
b	0.35	-	0.50	0.014	-	0.020
С	0.10	0.175	0.25	0.004	0.007	0.010
D	2.70	2.90	3.10	0.106	0.114	0.122
E	1.40	1.60	1.80	0.055	0.063	0.071
е	1.70	2.00	2.30	0.067	0.079	0.091
HE	2.40	2.70	3.00	0.094	0.106	0.118
L	0.30	-	0.55	0.012	-	0.022